On Some Hierarchical Clustering Algorithms Using Kernel Functions
نویسندگان
چکیده
منابع مشابه
Hierarchical Clustering: Objective Functions and Algorithms
Hierarchical clustering is a recursive partitioning of a dataset into clusters at an increasingly finer granularity. Motivated by the fact that most work on hierarchical clustering was based on providing algorithms, rather than optimizing a specific objective, [19] framed similarity-based hierarchical clustering as a combinatorial optimization problem, where a ‘good’ hierarchical clustering is ...
متن کاملA Comparative Study of Some Clustering Algorithms on Shape Data
Recently, some statistical studies have been done using the shape data. One of these studies is clustering shape data, which is the main topic of this paper. We are going to study some clustering algorithms on shape data and then introduce the best algorithm based on accuracy, speed, and scalability criteria. In addition, we propose a method for representing the shape data that facilitates and ...
متن کاملModern hierarchical, agglomerative clustering algorithms
This paper presents algorithms for hierarchical, agglomerative clustering which perform most efficiently in the general-purpose setup that is given in modern standard software. Requirements are: (1) the input data is given by pairwise dissimilarities between data points, but extensions to vector data are also discussed (2) the output is a “stepwise dendrogram”, a data structure which is shared ...
متن کاملParallel Algorithms for Hierarchical Clustering
Hierarchical clustering is a common method used to determine clusters of similar data points in multidimensional spaces. O(n*) algorithms are known for this problem [3,4,11,19]. This paper reviews important results for sequential algorithms and describes previous work on parallel algorithms for hierarchical clustering. Parallel algorithms to perform hierarchical clustering using several distanc...
متن کاملLocal Self-concordance of Barrier Functions Based on Kernel-functions
Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier function for the domain of the problem that has to be solved. Recently, a wide class of new barrier functions has been introduced in which the functions are not self-concordant, but despite this fact give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Japan Society for Fuzzy Theory and Intelligent Informatics
سال: 2005
ISSN: 1347-7986,1881-7203
DOI: 10.3156/jsoft.17.459